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The linear stability of the developing flow of an incompressible fluid in the 
entrance region of a circular tube is investigated. The case of non-axisymmetric 
small disturbances is considered in the analysis. The main-flow velocity distribu- 
tion used in the stability calculations is that from the solution of the linearized 
momentum equation. The eigenvalue problem consisting of the disturbance 
equations and the boundary conditions is solved by a direct numerical integra- 
tion scheme along with an iteration procedure. An orthonormalization method 
is employed to remove the ‘parasitic errors ’ inherent in the numerical integration 
of the coupled disturbance equations. The flow is found to be unstable to non- 
axisymmetric disturbances with an azimuthal wavenumber of one. Neutral- 
stability curves and critical Reynolds numbers at  various axial locations are 
presented. A comparison of these results is made with those for axisymmetric 
disturbances reported by Huang & Chen. It is found that the first instability 
of the flow is due to non-axisymmetric disturbances and occurs in the entrance 
region of the pipe with a minimum critical Reynolds number of 19 780. 

1. Introduction 
It is well known from analytical studies that fully developed Poiseuille flow 

in a circular tube is stable to axisymmetric small disturbances (see, for example, 
Corcos & Sellars 1959; Gill 1965; Davey & Drazin 1969, among others). The flow 
has also been shown analytically to be stable to all non-axisymmetric small 
disturbances by many investigators (Lessen, Sadler & Liu 1968; Burridge 
1970; Salwen & Grosch 1972; Garg & Rouleau 1972). In  addition, it has been 
found that the flow is least stable to the non-axisymmetric disturbance with 
azimuthal wavenumber n = 1 and is less stable to this disturbance than to 
an axisymmetric disturbance (n = 0), for both the wall and centre modes. The 
work of Graebel (1970), on the other hand, has shown that Poiseuille pipe flow 
is unstable to non-axisymmetric small disturbances at  large axial wavenumbers, 
giving critical Reynolds numbers of the order of 10-100 for azimuthal wave- 
numbers of 2 and larger. As was pointed out by Salwen & Grosch (1972), this 
conflicting finding of Graebel is probably due to the breakdown of the approxima- 
tion in his asymptotic solution, which is valid only for small axial wavenumbers 
andlarge Reynoldsnumbers. Asaresult, itisnow firmly establishedthat Poiseuille 
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pipe flow is globally stable to all axisymmetric and non-axisymmetric small 
disturbances. 

In the entrance region of a circular tube, the flow is hydrodynamically develop- 
ing and is, therefore, essentially of the boundary-layer type near the tube wall. 
Thus, instability of developing flow can be expected to occur near the wall a t  
sufficiently large Reynolds numbers. This has been found to be the case by Tat- 
sumi (1952a, b) ,  who studied the stability characteristics of the flow for the least 
stable wall-mode disturbances of axisymmetric type using an asymptotic method 
of solution and obtained a minimum critical Reynolds number of 9700 in the 
entrance region of the pipe. The analysis of Tatsumi has been found to be inade- 
quate by Huang & Chen (1974), who recently re-examined the stability charac- 
teristics of the same flow by a numerical method of solution. The last two authors 
have presented neutral-stability results and critical Reynolds numbers that are 
believed to be more accurate and reliable than those of Tatsumi and found a 
minimum critical Reynolds number of 19 900 for axisymmetric disturbances in 
the entrance region of the pipe. 

In  summary, the studies of the linear stability of flow in a circular pipe so 
far have concluded that (i) Poiseuille flow is stable to all axisymmetric and 
non-axisymmetric small disturbances, (ii) Poiseuille flow is less stable 
to non-axisymmetric small disturbances with azimuthal wavenumber n = 1 
than to axisymmetric small disturbances (n = 0) and (iii) developing pipe flow 
is unstable to axisymmetric small disturbances. The question that needs to be 
answered is the following. Is the first instability of the developing pipe flow due 
to axisynimetric disturbances or due to non-axisymmetric disturbances with 
n = 1 ? This motivated the present investigation. 

The present study deals with the linear stability of developing laminar pipe 
flow subjected to non-axisymmetric disturbances with azimuthal wavenumber 
n = 1. The case of timewise or temporal stability of the flow is considered in the 
analysis. For fully developed flow, it has been found (Lessen et al. 1968; Bur- 
ridge 1970) that, for a fixed axial wavenumber, the least stable wall mode and the 
least stable mode near the pipe centre exhibit a stability characteristic that has 
almost the same amplification rate at high Reynolds numbers. In  the experi- 
mental work of Fox, Lessen & Bhat (1968), the peak amplitude of the disturbance 
was observed to move away from the centre of the pipe as it propagated down- 
stream when the disturbance showed amplification. This observation seems to 
be in agreement with the finding of Chen (1969) that the wall mode plays a more 
important role than the centre mode in the nonlinear instability of the flow. 
In  addition, since the main flow in the development region of a circular tube is of 
the boundary-layer type, instability of the flow, if it  exists, should originate 
near the tube wall as it does in boundary-layer flows. For these reasons and for 
comparison with the results of Huang & Chen for axisymmetric disturbances, 
the wall mode is investigated in the present study. 

The governing equations for the disturbances and the boundary conditions 
constitute an eigenvalue problem which is solved by a direct numerical integration 
scheme along with an iteration technique. Neutral-stability curves at  different 
axial locations in the entrance region of the pipe are generated and the critical 
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Reynolds numbers are determined. The stability results from the present analysis 
are compared with those of Huang & Chen for axisymmetric disturbances. 

2. Formulation of the problem 
Before proceeding to the stability problem, attention is first given to the main 

flow. Consider a circular tube of radius r0, with X and F denoting, respectively, the 
axial and radial co-ordinates (0 < F < yo). An incompressible constant-property 
fluid enters the tube at  x = 0 with a uniform velocity distribution over the cross- 
section. The main flow is assumed to be laminar and steady. Of the various 
approximate methods of solution available in the literature for flow in the 
entrance region of a circular tube, the solution given by Sparrow, Lin & Lundgren 
(1964) appears to provide the most accurate and complete velocity field. 

By linearizing the inertia terms in the axial momentum equation, Sparrow 
et at. obtained a main-flow velocity field that is continuous over the cross-section 
and along the length of the tube from the entrance to the fully developed flow 
region. It is given by 

in which the a( are the positive roots of 

J,(aJ = +%Jo(a,), (2) 

with Jo and J1 denoting, respectively, Bessel functions of the zeroth and fist 
order of the fist kind. The dimensionless variables are 

where u and U are, respectively, the local axial velocity of the main flow and 
its average value, 2” is a stretched axial co-ordinate and v is the kinematic 
viscosity. The stretched axial co-ordinate Z* is related to the physical axial co- 
ordinate E by the relation 

X =/:* e(X*)  ax*, (4) 

where e is the stretching factor given by the expression 

The foregoing equations fully specify the main-flow velocity U as a function of 
x = S/ro and T .  

The use of the main-flow velocity given by (1) is of advantage in the stability 
calculations, because the velocity U and its derivatives are continuous functions 
of x and r and can be expressed with great accuracy. 

The stability problem will now be formulated. The starting-point of the analy- 
sis is the continuity equation and Navier-Stokes equations for incompressible 
three-dimensional time-dependent motion. Consider a pipe flow with velocity 
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components (&,a, a) in the (x, r ,  8) directions and with static pressure distribution 
9. In accordance with linear stability theory, the main flow in the hydrodynamic 
development region of a pipe may be regarded as a parallel flow. This model is 
consistent with the condition that aR $ 1 in the stability problem. Thus, the 
main-flow quantities can be approximated by (U(r ) ,  0, 0; P(x, r ,  8)). If (u+, v+, 
w+; p+) are the corresponding disturbances, which depend on (x, r,  8, t ) ,  where t 
is the dimensionless time based on r,, and ;i2, then the resultant flow field is given by 

a =  u+u+, a = v + ,  8 =  W+, fi= P+p+. (6) 

Substitution of ( 6 )  into the continuity equation and the Navier-Stokes equa- 
tions, followed by subtraction of the main flow and neglect of squares of dis- 
turbance quantities, will lead to the linearized disturbance equations. Next, 
the disturbances are assumed to be of the form 

where u(r) ,  v(r ) ,  w(r)  and p ( r )  are the r-dependent amplitude functions, a is the 
axial wavenumber, n is the azimuthal wavenumber and c = c,+ic, is the com- 
plex phase velocity. The flow is stable, neutrally stable or unstable depending on 
whether ci is negative, zero or positive. Substituting (7) into the disturbance 
equations, one finally obtains the following equations for the dimensionless ampli- 
tude functions: 

iccu + v' + vlr + in wIr = 0, (8) 

iaR(U-c)u+RU'v = -iaRp+u"+u'/r- (n2/r2+a2)u, (9) 

where R = Ur,/v is the Reynolds number and the primes denote differentiation 
with respect to r .  

The physical conditions to be satisfied by (8)-( 11) a t  the centre of the pipe 
are that the disturbance fluid velocities and pressure must be bounded and 
continuous at r = 0 (see Batchelor & Gill 1962). The conditions to be satisfied at 
the pipe wall r = 1 are that the disturbance velocities vanish. Thus, the boundary 
conditions are 

v = w = O  for n + l  at  r = O ,  ( 1 2 4  

(12b) 

I u = p = O  for n + O  

v+iw=O for n =  1 

u=v=w=O forall n a t r = i .  

To facilitate the numerical solution of the system (8)-( 12), it  is convenient to 
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transform (8)-( 11) into the following coupled equations by eliminating the 
pressure terms (Burridge 1970) : 

L2$ - 2anLQ = iaR[( U - c) L$ - $(L + a2 + n2/a2) U ] ,  (13) 

with c$ = -&w, R = (arw-nu)/(n2+a2r2). ( 1 5 )  

The operators are defined by 

d2 n2+3a2r2 1 d 
dr2 n 2 + a % 2  r dr 

L =-+ 

The boundary conditions (12) become, in terms of q5 and IR, 

$ = limr2-nq5'= Q = 0 for n + 0 at r = 0, (18a) 

$ = $' = R = 0 for all n at r = 1. (18b) 

-0 

The coupled linear equations (13) and (14) and the boundary conditions (18) 
constitute a homogeneous system and thus an eigenvalue problem of the form 

E(n,a,R,c) = 0, (19) 
which when solved gives a relationship among a, R, c and n. Generally, the value 
of c satisfying (19) is sought as the eigenvalue for given values of n, a and R. 
In  the present study, only the case n = 1 is treated numerically. 

3. Numerical method of solution 
The mathematical system consisting of (13), ( I  4) and (18) was solved for the 

case of n = I by a direct fourth-order Runge-Kutta integration scheme along 
with an iteration technique to find the eigenvalues. To use the fourth-order 
Runge-Kutta integration scheme for the solution of a mathematical system 
involving a differential equation of order n, the system must be transformed into 
an initial-value problem in which the values of the function and its derivatives 
up to the (n - 1)th are initially specified. Since (13) and (14) are of fourth order 
in $ and of second order in R, one needs to specify #, $ I ,  $ ' I ,  $'I1, R and R' a t  
r = 0. In addition, since r = 0 is a regular singular point of (13) and (14), their 
solutions have to be started near the point r = 0 with a series (e.g. Frobenius 
series) expansion around that point. This series expansion along with applica- 
tion of boundary conditions (18 a) provides three sets of independent solutions. 
Numerhl  integration of (13) and (14) is then performed with proper starting 
values near r = 0 and continued to the tube wall (r = 1). Application of boundary 
conditions (1 8 b)  leads, for a non-trivial solution, to the relationship expressed 
by (19). The eigenvalues were obtained by employing either the iterative pro- 
cedure of Muller (1956) or the differential-correction method. The latter is par- 
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FIGURE 1. Representative neutral-stability curves, n = 1. 

ticularly useful in mapping out the neutral-stability curves, for which ci = 0. 
Once the eigenvalue problem has been solved, the eigenfunction can be evaluated. 

It must be pointed out that instability of the flow occurs at  high Reynolds 
numbers, Thus, (13) and (14) become ill behaved during the numerical integration 
for large values of aR and at least one of the three independent sets of solutions 
grows very rapidly. This ‘parasitic error ’ inherent in the numerical integration 
causes the independent solutions to lose their charact,eristics and become 
dependent. To remove the ‘parasitic error ’, the Gram-Schmidt orthonormaliza- 
tion procedure (Wazzan, OkamurtL & Smith 1967) was employed. 

The details of the numerical procedure employed in the solution of the eigen- 
value problem can be found in Huang (1973). 

4. The neutral-stability results 
The neutral-stability results were obtained for the least stable wall mode with 

azimuthal wavenumber n = 1. The calculations were done using single-precision 
arithmetic on an IBM 360/50 digital computer. These results will now be pre- 
sented. 

Figure 1 shows the representative neutral-stability curves a t  axial locations 
X *  = 0.002, 0.003, 0.006, 0.010 and 0.015. It is seen from the figure that the 
neutral curves shift to the left as X *  increases from the pipe inlet and then shift 
back to the right as X *  increases further. That is, the flow becomes more and more 
unstable as X* increases, reaches the least stable condition, and then becomes 
more and more stable as X* increases further downstream. 

A comparison of the neutral-stability curves at few axial locations from the 
present study is made with those from the axisymmetric case (n = 0) in figure 2. 
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FIGURE 2. Comparison of neutral-stability curves. -, non-axisymmetric cam, 
n = 1 ; - - -, axisymmetric case, n = 0. 

The latter results are from Huang & Chen (1974). An inspection of the figure re- 
veals that axisymmetric disturbances cause a less stable flow than non-axisym- 
metric disturbances a t  small X* values. The opposite trend is in evidence for 
large X* values. 

The axial variation of the critical Reynolds number R, is shown in figure 3 
as a solid line, with the physical axial co-ordinate X used as the abscissa. 
Included also is the (dashed) curve for axisymmetric disturbances (Huang & 
Chen 1974). It is of interest to note that the two curves have a somewhat similar 
shape. For both the axisymmetric case (n = 0) and the non-axisymmetric case 
with n = I, the critical Reynolds number decreases with increasing X ,  attains a 
minimum value and then increases as X increases further downstream. The non- 
axisymmetric case gives a minimum critical Reynolds number R, = 19780 at 
X = 0-00490 as compared with the minimum value of R, = 19 900 at  X = 0.00325 
for the axisymmetric case. For X values smaller than 0.0038, the non-axisym- 
metric disturbances induced a more stable flow than the axisymmetric distur- 
bances. The opposite trend is true when Xis  larger than 0.0038. The fact that the 
flow is less stable to non-axisymmetric disturbances for large X values agrees 
with the conclusion of Lessen et al. (1968) and Burridge (1970) for fully developed 
Poiseuille flow. The critical stability characteristics at  various axial locations for 
n = 1 are shown in table 1. In  the table, a,, R, and ( c ~ ) ~  are, respectively, the 
critical wavenumber, the critical Reynolds number and the critical phase speed. 
The last column lists the number of steps N used in the calculations. 

The reason why axisymmetric disturbances are less stable than non-axisym- 
metric disturbances in the region close to the pipe inlet is believed to be due to the 
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FIGURE 3. Axial variation of the critical Reynolds number. 
-, non-axisymmetric ca.se, n = 1 ; - - - , axisymmetric cam, n = 0. 

X *  
0.002 
0.003 
0.005 
0.006 
0.007 
0.009 
0.010 
0.015 

x 
0.0009 
0.0014 
0.0026 
0.0032 
0.0039 
0.0054 
0.0062 
0.0104 

01, 

4.135 
3.240 
2.363 
2.103 
1.895 
1.593 
1.475 
1.025 

R, 
31 510 
26 220 
21 780 
20 700 
20 100 
19840 
20 200 
26 420 

( 4 ) a  

0.3633 
0-3740 
0-3869 
0.3910 
0.3936 
0.3957 
0.3949 
0.3791 

AT 

200 
200 
150 
150 
150 
150 
100 
100 

TABLE 1.  Critical stability characteristics for non-axisymmetric 
disturbances (n = 1) 

boundary-layer effect in that region. In the region very near the pipe inlet, the 
boundary layer is just developing along the pipe wall and the boundary-layer 
thickness is very small. Thus, the boundary-layer-type flow in this region is very 
close to being a plane flow and Squire’s (1933) theorem for plane parallel flow 
applies. 

The eigenfunctions u ( r ) ,  v(r) and w(r)  for n = I with a = 2-0, R = 20942, 
c, = 0.3884 and ci = 0 at  the axial location X = 0.00323 ( X *  = 0.006) are illu- 
strated in figure 4. All the quantities are normalized by the maximum magnitude 
of vT, the real part of v. It is noted that, for this axial location, the point 

(a,  R) = (2*0,20 942) 
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FIUURE 4. Eigenfunction at X = 0.00323 ( X *  = 0.006) for n = 1, a = 2.0, R = 20942, 
c, = 0.3884 and ci = 0. (a) Axial component. ( b )  Radial component. (c )  Azimuthal 
component. 
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lies below the minimum critical point (a,,R,) = (2.103, 20700) on the lower 
branch of the neutral-stability curve. 

L. M .  Huang and T. 8. Chen 

5. Conclusion 
Prom the present study, the developing flow in the entrance region of a circular 

tube has been found t o  be unstable to non-axisymmetric small disturbances with 
an azimuthal wavenumber of one. The minimum critical Reynolds number of 
19780 occurs at the axial location X = 0.0049. This critical Reynolds number is 
somewhat lower than the minimum value of 19 900 for the case of axisymmetric 
disturbances. The developing pipe flow is more stable to non-axisymmetric dis- 
turbances than to axisymmetric disturbances in the region very near the pipe 
inlet and less stable in the region away from the entrance. It is concluded from 
the present results that the first instability of pipe flow is due to non-axisym- 
metric disturbances and occurs in the hydrodynamic development region of the 
pipe. 

The numerical computation of the present work was made possible through 
funds from the Department of Mechanical and Aerospace Engineering, Univer- 
sity of Missouri-Rolla. 

R E F E R E N C E S  

BATCHELOR, G. K. & GILL, A. E. 1962 Analysis of the stability of axisymmetric jets. 
J .  Fluid Mech. 14, 529. 

BURRIDQE, D. M. 1970 The stability of Poiseuille pipe flow to non-axisymmetric dis- 
turbances. Geophys. Fluid Dyn. Inst., Florida State University, Tech. Rep. no. 34. 

CHEN, B. H. P. 1969 Finite amplitude disturbances in the stability of pipe Poiseuille 
flow. Ph.D. thesis, University of Rochester. 

CORCOS, G. M. & SELLARS, J. R. 1959 On the stability of fully developed flow in a pipe. 
J .  Fluid Meclt. 5, 97. 

DAVEY, A. & DRAZIN, P. G. 1969 The stability of Poiseuille flow in a pipe. J .  Fluid Mech. 
36, 209. 

Fox, J.A., LESSEN, M. & BHAT, W.V. 1968 Experimental investigation of Hagen- 
Poiseuille flow. phy8. Flu&, 11, 1. 

GARG, V. K. & ROULEAU, W. T. 1972 Linear spatial stability of pipe Poiseuille flow. 
J .  Pluid Mech. 54, 113. 

GILL, A. E. 1965 On the behaviour of small disturbances to Poiseuille flow in a Oircular 
pipe. J .  Fluid Mech. 21, 145. 

GRAEBEL, W. P. 1970 The stability of pipe flow. Part 1. Asymptotic analysis for small 
wave-numbers. J .  Fluid Mech, 43, 279. 

HUANG, L. M. 1973 Stability of the developing laminar flow in a circular tube. Ph.D. 
thesis, University of Missouri-Rolla. 

HUANG, L.  M. & CHEN, T. S. 1974 Stability of the developing laminar pipe flow. Phys. 
Fluids, in press. 

LESSEN, M., SADLER, S. G. & LIU, T. Y .  1968 Stability of pipe Poiseuille flow. Phys. 
Fluids, 11, 1404. 

MULLER, D. E. 1956 A method for solving algebraic equations using an automatic com- 
puter. Math. Tables & Aids to Comp. 10, 208. 

SALWEN, H. & GROSCH, C. E. 1972 The stability of Poiseuille flow in a pipe of circular 
cross-section. J .  Fluid Mech. 54,93.  



Stability of developing pipe pow 193 

SPARROW, E. M., LIN, S. H. & LUNDGREN, T. S. 1964 Flow development in the hydro- 
dynamic entrance region of tubes and ducts. Phys. Fluids, 7, 338. 

SQUIRE, H. B. 1933 On the stability for three-dimensional disturbances of viscous fluid 
flow between parallel walls. Proc. Roy. SOC. A 142, 621. 

TATSUMI, T. 1952a Stability of the laminar inlet-flow prior t o  the formation of Poiseuille 
regime. I. J .  Phys. SOC. Japan 7, 489. 

TATSUMI, T. 1952b Stability of the laminar inlet-flow prior to  the formation of Poiseuille 
regime. 11. J .  Phys. Soc. Japan, 7, 495. 

WAZZAN, A. R., OKAIKIJILA, T. T. & SMITH, A. M. 0. 1967 Stability of laminar boundary 
layer at  separation. Phys. Fluids, 10, 2540. 


